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Abstract. Using the Metropolis Monte Carlo scheme we have analysed and compared the 
behaviour of the two-dimensional classical planar and step models. In particular, we have 
analysed the energy, specific heat, correlation function and susceptibility on a range of 
finite lattices. While both models show similar numerical difficulties, it is argued that in 
the case of the step model a phase transition is unlikely. 

Two-dimensional models provide a surprisingly rich field of research. In 1966 Mermin 
and Wagner proved that no long range order (and hence no spontaneous magnetisation) 
could exist for certain two-dimensional models with a symmetric and continuous 
interaction function. In 1973 Kosterlitz and Thouless put forward a mechanism by 
which certain two-dimensional models could have a phase transition, but have no long 
range order. Models in this category have a low temperature phase occupied by bound 
vortex-antivortex pairs. At the critical temperature these pairs dissociate and lead to 
increasing disorder in the system. 

One of the most frequently studied two-dimensional models is the planar classical 
Heisenberg model given by the Hamiltonian 

N 
H =  -c c J , S $ " ' S ~ a )  

(ij) a = l  

where ( J1,  . . . , JN)  and ( S i ] ) ,  . . . , Si") are N-dimensional interaction and spin vectors 
(respectively) and the summation is over nearest-neighbour pairs (U). Strictly speaking, 
J is an N-dimensional, second-order diagonal tensor, but we adopt the conventional 
notational simplification of treating it as a N-dimensional vector. 

If we restrict to N = 2, we can associate an angle Oi and interaction function C( O i )  
with each vector Si and can write 

H = - J C  c(ei-ej) 
(0) 

where now J = J,  = J2 corresponding to the isotropic case. 
We define the planar classical Heisenberg model Hamiltonian by letting C (  e )  = 

cos( e )  and the step model by C( e )  = 1 for 101 s ~ / 2 ,  C( e )  = -1 for ~ / 2  < 101 < T and 
~ ( e + 2 ~ ) =  q e ) .  
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The Mermin and Wagner proof excludes a conventional phase transition for the 
planar model. It does not, however, apply to the step model because the interaction 
function is discontinuous. The planar model in contrast undergoes a phase transition 
of the type formulated by Kosterlitz and Thouless (1973). The step model does not 
have a vortex induced transition since the formation of vortices is not energetically 
favourable. This has been confirmed by series analysis (Guttmann 1978, Nymeyer and 
Guttman 1985). 

In this comment we study and compare the behaviour of the planar and step models 
with a view to understanding firstly the extent of rhe differences in behaviour and 
secondly to shed more light on the question of the existence of a phase transition for 
the step model. We use the traditional Metropolis Monte Carlo scheme already used 
extensively on the planar model (Miyashita et a1 1978, Tobochnik and Chester 1979, 
Fucito 1983, Fucito and Solomon 1983) but not on the step model. Work by these 
authors has proved invaluable as a check on our calculations. 

The theory underlying the Monte Carlo scheme has been well documented 
(Metropolis et a1 1953, Valleau and Whittington 1977). In this scheme we generate a 
representative sample of states on a finite lattice. To obtain estimates of thermodynamic 
functions we simply average over these states. 

The Monte Carlo procedure used is similar to that outlined in Tobochnik and 
Chester (1979). We have, however, increased the number of equilibrium sweeps from 
1000 to 2000, and the number of sweeps used to calculate averages from 2000 to 5000, 
and we have used a larger number of lattices. 

The heating and cooling data are collected at temperatures 0.25, 0.5 to 2.0 in steps 
of 0.1,2.25, 2.50, 2.75 and 3.0. The lattice sizes we use are 8 x 8, 16 x 16, 32 x32,64 x 64 
and 1OOx 100. The planar model, however, was not analysed on the lOOx 100 lattice 
as the interaction function for the planar model took substantially longer to evaluate 
than that for the step model. Unless stated otherwise, the data points shown on the 
plots will be averages of the heating and cooling data. 

The energy per spin and the specific heat for both models were calculated using 

( E )  = ( 1 / N ) ( H )  
and 

where we have already defined the Hamiltonian H, and n x n = N is the lattice size. 
We let T stand for l/pJ. 

In figure 1 we plot the.energy per spin of the step and planar models, for both 
heating and cooling cycles. There was no evidence of hysteresis for either model. The 
data, however, are not accurate enough for a ‘small amount’ of hysteresis to be 
detectable. Indeed, for the smaller lattices there was some discrepancy between the 
heating and cooling energy data. The amount of discrepancy decreased with increasing 
lattice size, and was not discernible on the largest lattice of each model (shown in 
figure 1). Increasing the number of equilibration sweeps (from 1000 to 5000) between 
successive temperatures did not affect the data shown in figure 1. 

In agreement with Miyashita et a1 (1978) we found the specific heat peak of the 
planar model to be located between T = 1.1 and T = 1.15 and this was verified by much 
longer runs (-100 000 sweeps) on the 16 x 16 and 32 x 32 lattices. This value is 
significantly higher than the estimate of Tobochnik and Chester (1979) of kT/ J = 1.02. 
The specific heat of the step model is plotted in figure 2. For both models the specific 
heat appears to be lattice independent. 

C = p 2 e  = ( p ’ /  N)((EZ) - ( E ) ’ )  
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Figure 1. Plot of energy per spin against temperature. A and V correspond to the cooling 
and heating cycle (respectively) for the step model on the lOOx 100 lattice, and likewise 
U and + to cooling and heating cycles for the planar model on the 64 x 64 lattice. 

We have calculated the correlation function by two methods. Firstly we used the 
simple expression 

C (  j )  = (cos( Bi - 

where spin i + j  is separated from spin i by j spins in the vertical (or horizontal) 
direction. The second method involves calculating the total magnetisation in the x 
and y directions of each column (say), M ( j )  = ( M x ( j ) ,  M , ( j ) )  where j = I to n. It is 
then a simple matter to calculate the correlation between the columns, and hence the 
correlation function by using 

c(j) = ( ( l / n )  i = l  M(i) * M ( i + j ) ) .  

The second method extracts more information from each sweep of the lattice. Both 
methods, however, give the same qualitative result. 

In figure 3 we plot the behaviour of C ( n / 2 )  for the planar and step models 
respectively, where n x n =  N is the lattice size. Since we use periodic boundary 
conditions the maximum effective distance we can calculate C ( j )  is n / 2 .  If we assume 
that for the step model the spins at low and high temperature are pointing randomly 
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Figure 2. Plot of specific heat against temperature for the step model on the 8 x 8 (U),  
16x16 (A), 32x32 (0), 64x64 (n) and lOOx 100 (R) lattices. 
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Figure 3. Plot of the correlation function against temperature for spins n/2  sites apart for 
the planar model ( a )  and step model (b)  on the 4 x 4  (V), 8 x 8  (U), 16x16 (A) ,  32x32 
(0), 64x64 (n )  and l 0 0 x  100 (ria) lattices. 

in the half and full plane respectively, then we can write 

LT: 1 IT'* cos( e )  dB = 2/ T 5 0.637 = -n/2 

HT: L [ w  COS ( e )  dB = 0. 
2 T  --.li 
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This behaviour is consistent with the behaviour of the largest lattice for the step model 
(shown in figure 3 ( b ) ) .  

Since the planar model has no conventional long range order we have that 

for T=O 
for T > 0. 

lim C ( n / 2 ) =  
n-w 

However, since we are only dealing with finite lattices we are concerned with how this 
limiting behaviour is approached. Using the parametrisation of Tobochnik and Chester 
(1979) we can write 

for T > T, 
for T < T,. ~ ( n / 2 )  - (n/2)-’l2“ 

For large fixed n we expect some smeared ‘step function’ behaviour for the { } factor 
modified by (n /2 ) - ’ / ’“  which is small but slowly varying in T near T =  T,. As n 
increases, the underlying ‘step function’ will get sharper, but the modulating factor 
( r 1 / 2 ) - ~ ” “  will get smaller, resulting in the above limiting behaviour (equation ( 1 ) ) .  
So, while long range correlations are indeed destroyed by spin waves, it should still 
be possible to see evidence of a massive/massless phase transition when we consider 
C ( n / 2 )  on a finite system. 

In the case of the planar model then, we would argue that the increasingly sharp 
and converging contours shown in figure 3 ( a )  are consistent with a phase transition. 
The contours shown in figure 3 ( b )  for the step model are more difficult to interpret. 
The behaviour, however, does appear to be different from that shown in figure 3( a ) ,  
and there is less evidence of either convergence or sharpening ‘step function’ behaviour. 

We studied the susceptibility x given by 

x = Pf = (P/”(M2) - (W). 
We know that for an infinite system the spontaneous magnetisation ( M )  = (cos 6) of 
the planar model is zero. For a finite system we find ( M )  small enough that it can be 
ignored. This was also found to be the case for the step model. We therefore only 
need calculate f =  ( 1 / N ) ( M 2 ) .  This function was also studied by both Miyashita et 
a1 (1978) and Tobochnik and Chester (1979). 

Miyashita et a1 (1978) arrived at a critical temperature kT,/ J = 1.15 by examining 
the lattice size dependence of the susceptibility, T, being marked by the transition 
from non-extensive to extensive behaviour. In contrast Tobochnik and Chester (1979) 
found a much lower critical temperature kT,/ J = 0.89 by fitting the correlation function 
and susceptibility data (at five temperature values between 1 .O and 1.2)  to the Kosterlitz- 
Thouless form. 

We would be far more cautious about using the susceptibility data to determine 
critical behaviour. In spite of using runs of over 60000 sweeps near the critical 
temperature, we found the data to be poorly behaved. We can see this poor behaviour 
in tables 1 and 2 of Tobochnik and Chester (1979) where, for example, at T = 1.15 
they found that when the system was being cooled (M’) = 123, but in the heating phase, 
at the same temperature, ( M z )  = 61. 

A second method of calculating the susceptibility is simply to sum the correlation 
function over the box size, i.e. 

n 

x =  c C(i). 
i = l  
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While the data generated using this method were found to be better behaved, we still 
did not feel it was possible to use these data to support an argument for or against a 
phase transition in the case of the step model, or to determine the critical temperature 
in the case of the planar model. 

A time series analysis (see Berretti and Sokal 1985) was carried out on the generated 
data points for the step and planar models. The aim of this analysis was to measure 
the degree of independence of the data, and thereby estimate the equilibration time 
of the system and the standard errors of each of the thermodynamic variables. The 
basis of this analysis is the calculation of the autocorrelation function 

where 1 is the run length, t E [0,1- 11 and x is the sample data with 

I - f  
2j= X J ( 1 - t )  

i = l  

I 
2i+l = c x j / ( l - t )  

j = r + l  

The autocorrelation time fa is the shortest time t = t ,  such that F (  fa) < 0.1. Obviously 
F ( 0 )  = 1. If all the data points are (pseudo)random, then F ( t )  is found to have 
approximately 10% noise (and hence the above limit) and la= 1. The larger the value 
of t,, the greater the correlation between the data. In practice, values of F ( t )  for 
t > 31/4 become increasingly meaningless as t + 1 - 1. This, however, was not a problem 
in estimating t ,  since in most cases we found that fa<  1001. 

At each temperature up to 10 blocks of 2000 sweeps were carried out. For each 
block the value of t ,  was calculated. Not surprisingly the largest estimates of t ,  were 
obtained in the temperature range 0.8 to 1.5, the same interval over which the specific 
heat (figure 2 )  has maximum gradient. For higher temperatures, the energy was 
essentially uncorrelated with fa = 2,  and for lower temperatures t ,  = 10. At each tem- 
perature, having determined a value for t , ,  the average energy was calculated by 
choosing every tath data point. In table 1 we list step model and planar model energy 
data with standard errors calculated by using 

where m is the number of sweeps, E, is the energy of a given configuration and E is 
the average energy. We also calculated the autocorrelation function for the magnetisa- 
tion. The behaviour, however, was erratic and inconclusive. 

Tobochnik and Chester (1979) also calculated standard deviations of their energy 
data, by simply averaging blocks of 200 sweeps, and calculating the standard deviation 
of these averages. Unlike the above autocorrelation analysis, however, their method 
takes no account of the increasing equilibration time of the system as the ‘critical 
temperature’ is approached (also called critical slowing down). 
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Table 1, Comparison of the energy per spin and its standard error for the step and planar 
models on the 8 X 8 and 32 x 32 lattices. 

Step model Planar model 

8 x 8  32 x 32 8 x 8  32 x 32 
T energy s energy s energy s energy s 

0.25 -2.000 
0.50 - 1.987 
0.60 -1.972 
0.70 -1.953 
0.80 -1.925 
0.90 -1.886 
1 .00 -1.835 
1.10 -1.801 
1.20 -1.719 
1.30 -1.653 
1.40 -1.535 
1.50 - 1.457 
1.60 - 1.367 
1.70 -1.274 
1.80 -1.194 
1.90 -1.144 
2.00 -1.064 
2.25 -0.929 
2.50 -0.824 
2.75 -0.755 
3.00 -0.693 

0.000 
0.000 
0.001 
0.001 
0.001 
0.002 
0.002 
0.007 
0.009 
0.011 
0.004 
0.005 
0.005 
0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.001 
0.001 

-2.000 
- 1.986 
- 1.972 
-1.951 
- 1.922 
-1.884 
- 1.840 
-1.782 
- 1.693 
-1.586 
- 1.499 
- 1.403 
-1.328 
- 1.246 
-1.177 
-1.114 
-1.055 
-0.936 
-0.836 
-0.754 
-0.687 

0.000 -1.873 
0.001 -1.735 
0.005 - 1.674 
0.008 - 1.604 
0.010 -1.540 
0.013 -1.457 
0.016 -1.359 
0.058 -1.233 
0.067 -1.114 
0.082 -0.993 
0.030 -0.905 
0.027 -0.807 
0.031 -0.726 
0.012 -0.676 
0.01 1 -0.633 
0.01 1 -0.591 
0.012 -0.540 
0.01 1 -0.458 
0.005 -0.428 
0.005 -0.387 
0.005 -0.351 

0.000 
0.000 
0.001 
0.000 
0.000 
0.001 
0.002 
0.002 
0.002 
0.005 
0.016 
0.015 
0.014 
0.015 
0.014 
0.012 
0.013 
0.012 
0.004 
0.004 
0.004 

-1.870 
-1.730 
-1.670 
- 1.600 
-1.535 
-1.441 
-1.324 
-1.180 
-1.041 
-0.941 
-0.851 
-0.774 
‘-0.7 15 
-0.663 
-0.620 
-0.579 
-0.550 
-0.477 
-0.426 
-0.384 
-0.347 

0.006 
0.012 
0.066 
0.024 
0.047 
0.060 
0.102 
0.019 
0.018 
0.017 
0.053 
0.055 
0.026 
0.022 
0.025 
0.024 
0.004 
0.004 
0.004 
0.004 
0.004 

For the planar model we find a specific heat peak at T z l . 1  which is in good 
agreement with Miyashita et a1 (1978). We are also in agreement with regard to the 
qualitative behaviour of the susceptibility. We do not, however, consider these data 
reliable enough to locate the critical temperature in the infinite lattice limit. For the 
step model the behaviour of the susceptibility is inconclusive. 

Neither the step model nor the planar model show any evidence of hysteresis. The 
behaviour of the specific heat also appears to be lattice size independent for both 
models. While it is possible to interpret the behaviour of C (  n / 2 )  for the planar model 
as supporting the existence of a critical point (at some T < l . O ) ,  this same interpretation 
does not appear possible for the step model. Since we ‘know’ that the step model does 
not undergo a topologically induced phase transition as is found in the planar model, 
we conclude that it is unlikely that the step model undergoes a phase transition. We 
should qualify this, however, by saying that numerical difficulties in the Monte Carlo 
procedure tend to obscure the differences that exist in the critical behaviour of the 
step and planar models. 

The conclusion that there is no phase transition in the step model is consistent 
with the work of Barber (1983) who carried out a Migdal renormalisation group 
transformation on a number of O(2)  spin systems including the step and planar models. 
For the planar model the Migdal transformation clearly identifies a high and low 
temperature phase, in contrast to the step model, where only one (disordered) phase 
can be identified. 
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Barber (1983) also studied the modified step model defined using the interaction 
function 

c(e+24 = c(e). 
He found the behaviour of the Migdal transformation changed dramatically between 
the ordinary step model and the modified step model with S <$. He suggests that this 
model may indeed undergo a phase transition of some type, or alternatively, that this 
behaviour is the result of some artefact of the Migdal scheme. 

We are currently studying the modified step model using Monte Carlo methods. 
This model is particularly interesting in the light of very recent Monte Carlo work by 
Domany et a1 (1984) and Van Himbergen (1984) on a modified planar model, defined 
using the interaction function 

c(e) = 1 - [ C O S ~ ( ~ / ~ ) ] P * .  

For p 2 3 this model is found to undergo a far stronger (first-order) phase transition 
than the planar model. Note that increasing p in the modified planar model has the 
same effect as decreasing 6 in the modified step model, i.e. it decreases the width of 
the well in the interaction function. This work will shortly be reported. 

We would like to thank Professor A J Guttmann and Professor A D  Sokal for stimulating 
discussions and constructive criticisms. In particular we would like to thank Professor 
Sokal for his very helpful suggestions regarding the statistical analysis and worth of 
Monte Carlo data. 
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